NAWQA Regional Stream Quality Assessments

- Status of the stream quality in the region
- Relations between stressors and ecological condition
- Relations between environmental setting and stream quality

RSQAs as of 2014

RSQA components

- Geographic distribution and seasonal changes in stressors
 - Contaminants, nutrients, and sediment in water
 - Contaminants in sediment
 - Contaminants in time-integrating samplers (POCIS)
 - Toxicity of sediment and water
 - Continuous WQ monitoring/temporal benthic chlorophyll
- Ecological conditions
 - Ecological sampling at all sites and regional estimates of condition
- Modeling/prediction

- 88 sites
- April-June weekly chemistry
- Late June ecology/habitat
- Continuous WQ
- Sediment sources
- Fish health
- GIS

U.S. EPA Expert Workshop: Nutrient Enrichment Indicators in Streams (April 2013)

Nutrients: TN and TP

 Primary producers: Chl-a, percent macrophyte cover, algal assemblages

 Ecosystem function: Continuous DO (heterotrophic and autotrophic responses)

TN and TP concentrations

General Approach: Reference

- Modeling Reference
 - Model the reference condition based on disturbance

Non-Forested Land Cover

PIEDMONT TN MODEL LogTN = 0.1 + 0.49*Agriculture + 0.14*Urban TN = $10^{0.1} = 1.0$ mg/L

Primary producers: benthic algal biomass and macrophyte cover

General Approach: Stressor-response

Empirical Modeling

While increases in TN and TP are often associated with increased algal biomass, the relationship is often weak and varies regionally.

Increasing nutrient concentration

Biological Condition and Nutrient Concentration

The Biological Condition in streams decreases with increased nutrients

Thresholds of response occur at low levels

- TP = 0.03 mg/L
- TN = 0.4 mg/L

Continuous WQ monitoring

- Six of 88 sites, YSI and SUNA (nitrate)
- March to October
- Monthly nutrient, habitat, light, and benthic algal biomass and macrophyte cover

Peak algal biomass may not occur when you sample

Dissolved oxygen and biological condition

NEET: Invertebrate biological condition decreased by 50% in streams where dissolved oxygen fell below 5 mg/L (n=46).

The accrual (colonization plus growth) of benthic algal biomass is a function of nutrients, light, and temperature, whereas hydrologic stability and grazing control the process of biomass loss (Biggs 1996).

N Assimilation Rates – Eagle Creek at Zionsville

Daily N assimilation rates can be calculated during baseflow conditions

Recommendations

- Regionalize: sites that span low to high nutrients
- Biological response better than nutrients alone
- Stressor variables: Nutrients and habitat (temp. and flow)
- Response variables:
 - Primary producers (benthic chlorophyll and macrophyte cover, algal assemblages)
 - Ecosystem function (Continuous DO)
 - Invertebrates can be useful, fish less so.
- Large spatial n for synoptic, but include nested temporal sites

General Approach: Classification

- Classification
 - Apples and Oranges
 - Separate waterbodies into ones expected to exhibit similar nutrient dynamics and biological responses in the absence of human impacts
 - A priori
 - Flow, climate, geology, hydrology
 - Ecoregions, physiographic provinces
 - A posteriori
 - Analyze nutrient/response dynamics in reference sites across landscape
 - For TMDLs, important to know that this is factored into target development, may not be necessary for a single waterbody

Complementary Approaches: Setting Targets

- TMDL Guidance
 - Reference
 - User surveys
 - Trophic classification
 - Literature
 - BPJ
- All of these are elements of Criteria Guidance

- Nutrient Criteria Guidance
 - Classification
 - Reference ConditionApproaches
 - Stressor-ResponseApproaches
 - Scientific Literature and Expert Judgment
 - Mechanistic Models
 - Multiple Lines of Evidence
- Some of these under TMDL Guidance
- Multiple uses

General Approach: Mechanistic Models

- Mechanistic and/or Process Models
 - E.g., WASP, QUAL-2k, EFDC, CE-QUAL, HSPF, MIKE...
 - Model specific endpoints to generate nutrient goals
 - Still need a desired endpoint for something...kicking the can, again
 - Primarily chemical endpoints (DO, clarity, pH), some biological endpoints (Chl a, some species)
 - AQUATOX can do ecological endpoints
 - Run these to back out nutrient concentrations/loads to meet response endpoint
 - Site specific application has limited the utility for regional criteria

Agricultural land in the riparian buffer, in percent

Response patterns of EPT richness to nutrient enrichment

